Selected New Aspects of the Calculus of Variations in the Large
نویسنده
چکیده
We discuss some of the recent developments in variational methods while emphasizing new applications to nonlinear problems. We touch on several issues: (i) the formulation of variational set-ups which provide more information on the location of critical points and therefore on the qualitative properties of the solutions of corresponding Euler-Lagrange equations; (ii) the relationships between the energy of variationally generated solutions, their Morse indices, and the Hausdorff measure of their nodal sets; (iii) the gluing of several topological obstructions; (iv) the preservation of critical levels after deformation of functionals; (v) and the various ways to recover compactness in certain borderline variational problems.
منابع مشابه
NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملPower Allocation Strategies in Block-Fading Two-Way Relay Networks
This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملA New Approach for Buckling and Vibration Analysis of Cracked Column.
In this paper mathematical formulation for buckling analysis of a column and vibrationanalysis of a beam is presented. The beam and the column is assumed to be non-uniform and cracked.Using calculus of variations, the problem is expressed as an optimization problem. A technique ofoptimization is used for analysis of buckling load. Considering the similarity between the governingequation for buc...
متن کاملFractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition
In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002